(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
nats → adx(zeros)
zeros → cons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
nats → adx(zeros)
zeros → cons(0', zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y
S is empty.
Rewrite Strategy: FULL
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
s/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
nats → adx(zeros)
zeros → cons(0', zeros)
incr(cons(X, Y)) → cons(s, incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
nats → adx(zeros)
zeros → cons(0', zeros)
incr(cons(X, Y)) → cons(s, incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y
Types:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
adx,
zeros,
incrThey will be analysed ascendingly in the following order:
incr < adx
(8) Obligation:
TRS:
Rules:
nats →
adx(
zeros)
zeros →
cons(
0',
zeros)
incr(
cons(
X,
Y)) →
cons(
s,
incr(
Y))
adx(
cons(
X,
Y)) →
incr(
cons(
X,
adx(
Y)))
hd(
cons(
X,
Y)) →
Xtl(
cons(
X,
Y)) →
YTypes:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
The following defined symbols remain to be analysed:
zeros, adx, incr
They will be analysed ascendingly in the following order:
incr < adx
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol zeros.
(10) Obligation:
TRS:
Rules:
nats →
adx(
zeros)
zeros →
cons(
0',
zeros)
incr(
cons(
X,
Y)) →
cons(
s,
incr(
Y))
adx(
cons(
X,
Y)) →
incr(
cons(
X,
adx(
Y)))
hd(
cons(
X,
Y)) →
Xtl(
cons(
X,
Y)) →
YTypes:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
The following defined symbols remain to be analysed:
incr, adx
They will be analysed ascendingly in the following order:
incr < adx
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
incr(
gen_cons3_0(
+(
1,
n8_0))) →
*4_0, rt ∈ Ω(n8
0)
Induction Base:
incr(gen_cons3_0(+(1, 0)))
Induction Step:
incr(gen_cons3_0(+(1, +(n8_0, 1)))) →RΩ(1)
cons(s, incr(gen_cons3_0(+(1, n8_0)))) →IH
cons(s, *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
nats →
adx(
zeros)
zeros →
cons(
0',
zeros)
incr(
cons(
X,
Y)) →
cons(
s,
incr(
Y))
adx(
cons(
X,
Y)) →
incr(
cons(
X,
adx(
Y)))
hd(
cons(
X,
Y)) →
Xtl(
cons(
X,
Y)) →
YTypes:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
Lemmas:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
The following defined symbols remain to be analysed:
adx
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
adx(
gen_cons3_0(
+(
1,
n192_0))) →
*4_0, rt ∈ Ω(n192
0)
Induction Base:
adx(gen_cons3_0(+(1, 0)))
Induction Step:
adx(gen_cons3_0(+(1, +(n192_0, 1)))) →RΩ(1)
incr(cons(0', adx(gen_cons3_0(+(1, n192_0))))) →IH
incr(cons(0', *4_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
nats →
adx(
zeros)
zeros →
cons(
0',
zeros)
incr(
cons(
X,
Y)) →
cons(
s,
incr(
Y))
adx(
cons(
X,
Y)) →
incr(
cons(
X,
adx(
Y)))
hd(
cons(
X,
Y)) →
Xtl(
cons(
X,
Y)) →
YTypes:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
Lemmas:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
adx(gen_cons3_0(+(1, n192_0))) → *4_0, rt ∈ Ω(n1920)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
nats →
adx(
zeros)
zeros →
cons(
0',
zeros)
incr(
cons(
X,
Y)) →
cons(
s,
incr(
Y))
adx(
cons(
X,
Y)) →
incr(
cons(
X,
adx(
Y)))
hd(
cons(
X,
Y)) →
Xtl(
cons(
X,
Y)) →
YTypes:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
Lemmas:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
adx(gen_cons3_0(+(1, n192_0))) → *4_0, rt ∈ Ω(n1920)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
nats →
adx(
zeros)
zeros →
cons(
0',
zeros)
incr(
cons(
X,
Y)) →
cons(
s,
incr(
Y))
adx(
cons(
X,
Y)) →
incr(
cons(
X,
adx(
Y)))
hd(
cons(
X,
Y)) →
Xtl(
cons(
X,
Y)) →
YTypes:
nats :: cons
adx :: cons → cons
zeros :: cons
cons :: 0':s → cons → cons
0' :: 0':s
incr :: cons → cons
s :: 0':s
hd :: cons → 0':s
tl :: cons → cons
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
Lemmas:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
incr(gen_cons3_0(+(1, n8_0))) → *4_0, rt ∈ Ω(n80)
(24) BOUNDS(n^1, INF)